Improved Long Short-Term Memory-Based Periodic Traffic Volume Prediction Method

نویسندگان

چکیده

In response to the problem of fixed time intervals for short-term traffic flow prediction, which fails meet requirements signal control based on cycle signals, this paper proposes an improved long memory-based method periodic volume prediction. The presented in study involves improvements Long Short-Term Memory (iLSTM) and Bidirectional (iBiLSTM) models, leading construction iBiLSTM-iLSTM-NN model. This model incorporates spatial data from surrounding intersections employs fitting techniques establish correlation between queue length volume. Subsequently, a predictive is developed correlation, enabling reliable forecasting future volumes within given cycle. Additionally, actual intersection collected simulation analysis. results indicate that prediction error influenced by different characteristics such as peak, off-peak, normal periods, well inbound lanes. Different parameters have noticeable impact model’s performance, with smaller batch sizes more stable models. By comparing performance models using various evaluation metrics, finds proposed exhibits most performance. research findings can be applied rapidly predict several periods instantaneous at end red phase, providing reliable, accurate, timely urban control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Prediction Based on Random Connectivity in Deep Learning with Long Short-Term Memory

Traffic prediction plays an important role in evaluating the performance of telecommunication networks and attracts intense research interests. A significant number of algorithms and models have been put forward to analyse traffic data and make prediction. In the recent big data era, deep learning has been exploited to mine the profound information hidden in the data. In particular, Long Short-...

متن کامل

A Long Short-Term Memory Recurrent Neural Network Framework for Network Traffic Matrix Prediction

Network Traffic Matrix (TM) prediction is defined as the problem of estimating future network traffic from the previous and achieved network traffic data. It is widely used in network planning, resource management and network security. Long Short-Term Memory (LSTM) is a specific recurrent neural network (RNN) architecture that is well-suited to learn from experience to classify, process and pre...

متن کامل

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

a hybrid neuro-genetic approach to short-term traffic volume prediction

this paper presents a hybrid approach to developing a short-term traffic flow prediction model. in thisapproach a primary model is synthesized based on neural networks and then the model structure is optimized throughgenetic algorithm. the proposed approach is applied to a rural highway, ghazvin-rasht road in iran. the obtainedresults are acceptable and indicate that the proposed approach can i...

متن کامل

Long Short-term Memory

Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3305398